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Abstract

Usually, the PARAFAC2 method is utilized for handling retention time shifts in resolving chromatographic three-way data. It requires all
profiles shift the same amount, which, unfortunately, seems unlikely the case in the practice of chromatographic analysis of multi-component
samples. The present authors deal with the problem by unfolding the three-way data array along a certain direction into one matrix and setting
up a multi-bilinear model. Then, a new method called vertex vector sequential projection (VVSP) is proposed to select pure variables and then
the alternating least squares (ALS) procedure is used to iteratively improve the fit of the data to the multi-bilinear model. With a good estimate
that is as close as possible to the pure variables, a fast convergence can be expected. Moreover, no prerequisite on the shifting is required an
the multi-bilinear model provides a plausible manner to make use of the multi-sample information. An additional advantage is that the present
fitting procedure is easier to adjust when constraints such as non-negativity, unimodality, etc., are to be imposed on the loading matrix. The
proposed method is evaluated with simulated and real chemical data sets. Satisfactory resolution results are obtained, which demonstrates th
performance of the proposed method.
© 2005 Published by Elsevier B.V.
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1. Introduction High-performance liquid chromatography with diode
array detection (HPLC-DAD) is a widely used analytical
Parallel factor analysis (PARAFAC) is a multi-way technique. DAD measures absorbance as a function of both
method originated from psychometrids?2]. It utilizes alter- time and wavelength, and provides a two-dimensional data
nating least squares in an iterative manner, exploiting the matrix to every sample that is analyzed. In recent years, the
conditional linearity of a trilinear model. The PARAFAC demand for rapid HPLC analysis has increased in a number of
algorithm has gained much interest in chemometrics and hasanalytical field§9,10]. However, the chromatographic shift-
been widely utilized in analytical practice due to the unique- ing could hardly be avoided because the stability of both
ness and optimality of its results as well as the so-called operator and the state of the instrument could not always be
second-order advanta&-7]. guaranteed from run to run. If the shifting is severe, the tri-
The most important prerequisite for the successful appli- linearity required by the PARAFAC algorithm is no longer
cation of PARAFAC is that the data arrays should strictly satisfied.
follow a trilinear model, which unfortunately might be vio- Usually, the PARAFAC2 method is utilized for han-
lated in practice. There are several reasons that result in thedling retention time shifts in resolving chromatographic
deviation of chemical data from the trilinear model as classi- data[11,12]. It requires all profiles shift the same amount,
fied by Booksh and KowalskB]. Chromatographic shifting ~ which, however, seems hardly to be the case in the prac-

in HPLC-DAD data is one instance. tice of the chromatographic analysis of multi-component
samples.
* Corresponding author. . In this paper, the authors deal with the protl)lem. by _unfold-
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matrix and setting up a multi-bilinear model. Then, a method chromatographic matrix, the relative spectral matrix and the
is proposed to select pure variables and iteratively improve concentration matrix, respectively.
the fit of the data to the multi-bilinear model. Additionally,
the multi-bilinear model provides a plausible manner to make
use of the multi-sample information. 3. Theory and algorithm

A two-way data matrix is obtained by unfolding the three-
way data array. Thus, two-way resolution techniques can be The structural model of PARAFAC can be expressed in
utilized to the unfolded data matrix. In two-way resolution, matrix notation as follows:
the pure profiles are also referred to as pure variables. In .
this paper, the proposed approach is mainly based on theX* = Arxrdiag(§)B),r+Ex,  k=12...,K(1)
fact that the pure variables are all boundaries in the vector whereX. is kth horizontal slice of the three-way data array
space, which means two-way data points are bracketed byX. E., is the corresponding slice of the three-way residue
the pure variablefd 3—15]. Submitted to normalizations, two-  arrayE. diag(¢,) is a diagonal matrix with elements equal to
way data points are located on a polyhedral hyper-“spherical” the kth row of matrixC.
surface with the pure variables on the vertices. Thus, a cer-  As there is assumed to be retention time shift, the relative
tain quadratic form is to be maximized by the vertex vectors, Chromatographic matrix could not be expressed by a Sing|e

which are pure variables if they exist. A procedure for deter- matrix A. So, the three-way model for PARAFAC2 is modi-
mining the pure variables called vertex vector sequential pro- fied as follows:

jection (VVSP) in the two-way data is proposed. To improve
the resolution, the alternating least squares (ALS) procedureX-« = Ax diag(¢)B" +E.4,  k=1,2,....K )
is adopted.

The iterative nature of the proposed algorithm means that
starting variables are required, and the algorithm is guar-
anteed to improve the least squares fit of the data to the
multi-bilinear model at each iteration. One can imagine that X = [X"; X', -+ X', ],  k=12...,K (3)
good starting values, which are as close as possible to the
real ones, would undoubtedly speed up the convergence oft

whereA,, differs from sample to sample.
Unfolding the three-way data arr&y and arranging the
unfolded matrixX as follows:

hen one has

the algorithm. The main idea of the VVSP is to find the \(ari— Xikxs = D[KxFB}—xF +Ekxs 4)
ables that are most apart from each other. If the pure variables N
existin the data set, VVSP could find them one by one; if not, whereD is defined ad =[D] D) ... DL], Dy =

VVSP is inclined to find the nearest point to the pure one in A diag(c,) (k=1,2,...,K). Eisthe unfolded residue matrix.
the vector space. So, with good estimates to the pure variableObviously, there ar& sub-matrices in the unfolded matrix
as the starting values that VVSP provides, a fast convergenceX that follow the bilinear model, so E@) is called a multi-
could be achieved. bilinear model and the unfolded matiXis, in form, a two-

With the proposed method, it can be expected to enhanceway matrix. Therefore, the two-way resolution techniques
the quality of the decomposing results comparing with the can be utilized in this case. Note tijtis actually the relative
direct decomposition by PARAFAC when the shifts are chromatographic matrix for thigh sample.
severe. The proposed method is evaluated with simulated In two-way resolution, the pure profiles are also referred
examples and real HPLC-DAD data set. Satisfactory resolu- to as pure variables. As the norms of spectra and the chro-
tion results are obtained for both artificial and real chemical matograms cannot be uniquely determined, one can prescribe
data sets with the proposed method. a certain scale constraint for the spectral or chromatographic

profiles, say the spectral profiles are assumed to have unit

norm. It can be deduced that subject to normalizations, the
2. Nomenclature spectral points (each spectrum can be regarded as a pointin a

J-dimensional space) in the two-way d&are located on a

Throughout this paper, scalars are represented with low- polyhedral hyper-“spherical” surface. As mentioned above,
ercase italics and vectors with bold lowercase characters.the pure variables are all boundaries in the vector space, which
Bold capitals designate two-way matrices and underlined means two-way data points are bracketed by the pure vari-
bold capitals symbolize three-way data arrays. The lettersables. Based on this fact, a procedure can be designed to
1, J andK are kept for denoting the dimensions of different identify the pure variables. In order to ascertain the pure vari-
modes in three-way data arrays;is the number of actual  ables, it is sufficient to identify the vertex vectors, and this

underlying factorsA, B and C with dimensions ofl x F, constitutes the basis of the proposed algorithm for determin-
J x FandK x F, respectively, are the three loading matrices ing the pure variables in two-way data.
of X. If the three-way data arraX is gained by stacking Suppose a number (not all) of pure variables have been

matrices recorded by HPLC-DAD over different samples, found, there must exist an additional one, among the remain-
loading matricesA, B and C would be called the relative  ing pure variables to be determined, which is most apart from



Z.-G. Wang et al. / Talanta 68 (2006) 1371-1377 1373

the space and thus is the nearest to the complementary spacgequential projection, is developed as follows:

spanned by the known ones. As the variables in the two-way

data matrix are all normalized to unit length, the additional - Step I: Select a feasible set that is composed of the spectra
pure variable, when projected to the complementary space having norms larger than a specified positive constant

of the known ones, should have the longest length. Thus, the- Step 2: Normalize each spectrum in the feasible set to unit
length of the normalized variables projecting to the comple- norm.

mentary space of the known one(s) can be used as an index Step 3: Determine the first pure variable; in such a

to determine a sought-for pure variable. If the additional pure ~ way—select the spectrum with the largest norm in the orig-
variable is not presentin the normalized data, the variable that  inal data matrixX asr’ and normalize ", find the spectrum

is nearest to the additional pure one would be determined asa ¥; . in the feasible set that maximizés™ — y] ||, asba.
substitute, which is also required to have the farmost distance- Step  4: Let G=I,-— ZNZ; and Zy =

to the complementary space spanned by the knownpureones. [b1 bz --- by] (N=1, 2, ..., F-1), and find
The normalized bilinear model is given below: the spectrumby.;, in the feasible set that maximizes the
uadratic fornyTG(y])".

- Step 5. Repeat Step 4 untit pure spectral variables have

whereY is the two-way data matrix with each row Xfnor- been identified.

malized to unit normB is the pure spectral matrix that is nor-
malized to unit norm columnwise. Comparing with K4),

W can be called the normalized chromatographic matrix. Let
Zy=[b1 by --- by] (N<F), andG =1; — ZyZ}.

Zy collects the pure variables that have been found and nor-
malized to unitlength represents the complementary space

spanned by the pure variables .bz’ , bN No_te thai; IS& " that the pure variables to be determined have a sufficient
"?0“'”39"’.‘“"9 deﬁmte symmetric matrix and.|s also a projec- signal-to-noise ratio. The gradually improved non-negatively
tion matrix constituted by a part 0 fpure varlables and bears definite matrixG in Step 4 is to make the identified pure vari-
the property ofG =GG. If an arbitrary rov¥ in the normal- ables have zero values for the quadratic form such that the
ized matrixY is represented by, then (y)' = Bw,where  pyre variables already found can be excluded in subsequent
W= (w,-T)T andwl-T is the corresponding row of matriwy. searching for unidentified ones.
Then, the projected vector of a normalized row of the matrix  If some pure spectral variables are absent or the noise in
Y, i.e. the variables to be examined, to the complementary the data is too heavy, the resolved “pure” variables by the
space of the known ones can be expresse@By, and the proposed procedure may lead to an irrational solution for
length of the projected vector can be expressed as follows: the other set of pure variables gained via the least square
method. To improve the resolution, an optimization pro-
f(w)=w'B'GBw (6) cedure, the alternating least squares procedure is adopted.
Combining with some constraints such as non-negativity,
nimodality, etc., ALS is expected to improve the results
(is:eratively.

Note that in the procedure, a step to select a feasible set
for the pure variables is adopted to exclude those spectra
with very poor signal-to-noise ratios. This step is essential to
maintain that, even in the presence of measurementerrors, the
normalized spectra are still approximately contained in the
polyhedral hyper-“spherical” surface. In addition, it ensures

Here, the property ot =GG andG =G is utilized.
Based onthe above description, a procedure can be derive

for locating the pure variables in two-way data. As a matter Note that an additional advantage of the proposed method

ofbfa_ct, g.the nﬁn-negaﬂve ﬁleﬁmte symmeltrlc mglttklsl q is that the present fitting procedure is easier to adjust when
obtained in such away that the pure spectral variables already, ,,iaints such as non-negativity, unimodality, etc., are to be

found are included in its null space, one can plot the values Ofimposed on the loading matrix. As in the present study, the

; T(xT\T ; L .

the quadratic forny; G(y; ) for all the normalized spectra  gpplications involve the data from hyphenated chromatog-
y; - Thus, the normalized spectrum having the maximal value raphy: the unimodality rectification step is included in the
amongyiTG(yiT)T gives one of the remaining pure spectral algorithm. This is implemented in the same way as orthogo-
variables. Then, the remaining pure variables can also benal projection analysigL6].
identified successively. So, the first pure variable must be  After the resolution finished, the relative concentrations
found to start the procedure. A simple way to decide the first in all the samples can be easily obtained by the inte-
pure variable is that lat” be the normalized spectrum, whose gral of the resolved relative chromatographic matriBgs
norm is the largest in the original two-way mati¥ The which is the basis of chromatographic analysis, i.e. the
normalized spectrum whose distance tas the farmostcan  integral calculus of a chromatogram is proportional to the
be utilized as the first pure variable. Based on the geometry ofconcentration of an analyte. Thus, a three-way resolution
the normalized two-way data, the way for selecting the first is achieved by the multi-bilinear model and the proposed
pure variable in such a way can be easily explained. method.

In light of the principles above, the procedure for the The proposed method was evaluated with simulated and
ascertainment of the pure spectral variables, vertex vectorreal chemical data sets in the following section. Satisfactory
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resolution results were obtained, which demonstrates the per-are normally distributed with zero mean and standard devia-
formance of the proposed method. tion 0of 0.002. The cross-products of relative chromatographic
matrices of the samples 1 and 10 are shown as below:

1.0000 0.0030 0.000
AJA; = |0.0030 1.0000 0.044p and
4.1. Simulated samples 0.0000 0.0449 1000

. 1.0000 0.1502 0.000
The proposed method was performed on an artifi- -
cial three-way data array of a three-component sys- AipA10= | 0.1502 1.0000 0.044
tem. The data were simulating HPLC-DAD profiles of 0.0001 0.0449 D000
10 samples with dimension of 3040x 10 (retention
time x wavelengthx sample). Spectra and chromatograms  The cross-products of relative chromatographic matrices
were generated as sums of Gaussian peaks and depicted ire required to be constant oveny the PARAFAC2 model.
Fig. 1. For simplicity, only the first chromatogram shifts from The cross-products shown above have been scaled by mak-
sample to sample and the other two chromatograms remaining the first value 1 for the convenience of comparison. It is
steady to the retention time. The noise for the data sets isreadily seen that these matrices are not identical and hence

created using a three-way array of random numbers thatthe requirement for the PARAFAC2 model to hold is not
valid here. So, the comparison is mainly carried out between

PARAFAC and the proposed method.

4. Experimental

4.2. HPLD-DAD data array

4.2.1. Reagents and stock solutions

Allreagents used were of analytical grade. Stock solutions
of Vitamins By, By, B3 and Bs were prepared by accurately
weighting appropriate amount of reagents and dissolving
Vitamins By, B3 and Bs in eluant solution and Vitamin 8in
NaOH solution (0.01 mol £1). The stock solutions were all
dissolved in 100 mL volumetric flasks and the eluant is used
as diluting agent. In the preparation of stock solutions, an
appropriate amount of hydrochloric acid was added to Vita-
min By solution to make its pH value less than 7. A total
of 11 working solutions with different concentrations of the
4 components were made by taking appropriate volumes of
stock solutions into 10 mL volumetric flasks and then making
them to 10 mL with the eluant.

4.2.2. Apparatus

The HPLC-DAD response matrices of all the samples as
well as six blank solutions were recorded by Agilent-1100
with Eclipse ADB-C8 (4.6x 250, 5um) as the separating
column. The wavelength range is 248-318 nm with a fixed
interval of 2nm and the monitoring time is from 59.7 s to
107.7 swith a fixed interval of 0.4 s. The solution of methanol
and water (volume rate 70:30) was used as eluant. The flow-
ing rate is 1.0 mL mint, column temperature is 2& and
injection volume is 20.Q.L.

5. Results and discussion

Fig. 1. The resolved profiles (dotted line for chromatograms (a) and spectra  The proposed method needs an input of the component
(b) and diamonds for concentrations (c)) by VVSP-ALS compared with e v ibal .

. - . ) number, which is vital in two-way data resolution. The com-
real profiles (solid line) for the three components in the simulated samples. . .
The numbers in italic style in (a) indicate the corresponding retention time ponent number can be determined by analysis of the so-called

numbers that give the pure variables identified by VVSP. rank map. As it is not an emphasis discussed in the present
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study, for simplicity, itis assumed that the component number
is known for the simulated and real HPLC-DAD data sets.

5.1. Simulated samples

With the component number set to 3, VVSP sequen-
tially found the pure spectral variables, which are the 330th,
the 249th and the 440th spectra in the unfolded maXrix
respectively. As the number of retention time is 70, the cor-
responding spectra are the 50th spectrum in the fifth sample,
the 39th spectrum in the fourth sample and the 20th spectrum
in the seventh sample, which are showifig. 1a. It can be
seen that the pure retention time points identified are all dom-
inated by a single component, which indicates that VVSP is
capable of determining the pure variables, when they actually
exist.

With the identified pure spectral variables as the start-
ing estimate, VVSP-ALS gives the resolution in 89 itera-
tions. The recovered profiles are perfectly consistent with
the true ones (Fig. 1a and b, solid line for true ones and
dotted line for resolved ones), showing that the proposed
method is able to resolve the spectra as well as the true chro-
matograms for each sample when there exist retention time
shifts. After the resolution is finished, the relative concen-
trations are obtained simply by the integral calculus of each
Dy, which are depicted (diamonds) itig. 1c together with
the true concentrations (solid line). One can see that they are
matching very well, which further testifies the performance
of the proposed method.

We also carried out the PARAFAC algorithm on the sim-
ulated data set. As the PARAFAC procedure uses the same
chromatographic matriA for all the samples, the resolved
chromatogram for the first eluting component, which shifts Fig. 2. Theresolv_ed profiles (solidIinefor_chromatograms (a), dotted line for
L . . spectra (b) and diamonds for concentrations (c)) by VVSP-ALS compared
in different sample_s .m the simulated data, S_homd be an aver—with real spectral (b) and concentration (c) profiles (solid line) for the four
age of the true shifting chromatograms. It is found that the components in the real HPLC-DAD data array. The numbers in italic style
resolved chromatographic profile for the first component is in (a) indicate the corresponding retention time numbers that give the pure
more close to that of sample seven, comparing other sam-variables identified by VVSP. The peak with an arrow in (a) belongs to the
ples. Due to the influence of shifting, the resolved spectra first €luting component.
and the concentrations of the first component and its over-
lapping component (the second eluting component) deviateables successively ascertained by VVSP are the 292nd, 804th,
slightly from the true ones, while the third eluting component 209th and 29th spectra in the unfolded maXixespectively.
is nearly free of influence since it overlaps only a very small Similarly, they are the 52nd spectrum of the third sample, the
part with the shifting component. This is supported by the 84th spectrum of sample seven, the 89th spectrum of the sec-
correlation coefficients between the resolved and true pro-ond sample and the 29th spectrum of the first sample. With
files for the three components, which, in orders, are 0.9986, the identified pure spectral variables as the starting estimate,
0.9999 and 1.0000 for spectra, and 0.9982, 0.9992 and 0.9998he resolution of the unfolded real HPLA-DAD data matrix
for concentrations. Comparing these results, the values forby VVSP—ALS is achieved in 35 iterations. The relative con-
VVSP-ALS are actually 1.0000. This sustains that if the shift centrations were also obtained by the integral calculus of all
in the chromatography is severe, PARAFAC bears a more D;. The resolved chromatographic profiles together with the
serious influence, while the proposed method is robust to thelocation numbers of the pure spectral variables are shown in

shifts, since it is designed for solving the problem. Fig. 2a and the resolved spectra (dotted line) and relative con-
centration (diamonds) profiles as well as the true ones (solid
5.2. HPLD-DAD data array line) are depicted ifrig. 2b and c, respectively. Note that the

peak with an arrow ifrig. 2a belongs to the first eluting com-
The real HPLD-DAD data array comprises 120 retention ponent according to the resolution results. It heavily deviates
times, 35 wavelengths and 11 samples. The pure spectral varifrom the peaks of the first group.
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Table 1 Table 2
Concentrations of 11 mixtures in HPLC-DAD data array Correlation coefficients between the real and resolved spectral profiles for
the real HPLC data array

Samples Concentration (g mt)

- - - - Vitamin B; Vitamin Bg  Vitamin B3  Vitamin B,
Vitamin By Vitamin Bg Vitamin Bz Vitamin B,

VVSP-ALS 0.9994 0.9999 0.9990 0.9999

1 0.1500 0.0000 0.0000 0.0000 (11 samples)

2 0.0000 0.0000 0.0000 0.0500 PARAFAC 0.9892 0.9999 0.9992 0.9868

3 0.0000 0.0800 0.0000 0.0000 (11 samples)

4 0.0000 0.0000 0.6000 0.0000 PARAFAC 1.0000 1.0000 0.9995 0.9999

5 0.1000 0.0400 0.0000 0.0000 (10 samples)

6 0.0000 0.0000 0.4500 0.0400

7 0.0750 0.0400 0.3000 0.0000

8 0.0000 0.0200 0.2250 0.0300 is obtained by the VVSP—-ALS method. This upholds that the
9 0.0250 0.0080 0.3000 0.0100 proposed method is sure to give a better resolution for the
10 0.0500 0.0400 0.3750 0.0300 : . ) .
1 0.1200 0.0080 0.4000 0.0600 heavily shifting chromatograms comparing with PARAFAC

and in the meantime, this is also propitious to the second-
order calibration.

From the results that VVSP—-ALS provides, itis found that
the chromatogram of the first component in sample 11 has
the most severe deviation. If sample 11 is excluded from the
data set, the remaining 10-sample system is approximately
following the trilinear model. So, the present authors redo
the decomposition with PARAFAC by removing sample 11
from the data set. The correlation coefficient results of the

It can be seen fronkig. 2a that the pure retention time
points identified for the components 1-3 are dominated by a
single component, while for the component 4, the retention
time point (time 89) seems not a point that gives pure variable.
But by the observation of the true concentrations (Table 1),
one can find that the third eluting component is not presentin
sample 2. So, time 89 in the second sample, which is identi-

fied by VVSP as a pure spectral point, is actually providing a 0-sample data set are showriTable 2for the spectra and
pure spectral estimate for component 4. This can be regarde able 3for the concentrations. Comparing with the results
as an advantage of the proposed method, i.e. it could make use 11-sample data set, the de.composing results are remark-
of different presentation and separation of components in theably improved, since t,he deviation from the trilinear model

gfjg:: i:rr:lpgest fnZTasrgz gsr_e ;’?Sﬁglsesr}]ollth:.r?thg.;;;?ggtfor the system is alleviated. This validates that PARAFAC is
separatin c)éncLil't'onsyFor a élcj)m licated 2 stL:arln gd'flferent capable of managing data sets when they are slightly deviated

parafing 1ons. Pl oY » GTETeNL £ om the trilinear model with satisfactory results. However,
separating conditions of chromatography might result in dif-

f teluti | f chemical ts which miaht when the deviation is beyond a certain extent and the trilin-
erent eluting overlaps of chemicalcomponents, WhichMight o, - 546 is no longer a valid hypothesis, PARAFAC would
contribute pure variables for different components. By sim-

: . ) be unsuitable for interpreting the data set. Thus, alternative
ply arranging the obtained matrices as E2), one can get procedures should be adopted
tsri]r?cse”;?:lears n:aucltt:;ﬁ”r;?:;; rﬂg%il L%rcﬁgﬁ s;”;ﬁliish If:jm)él sis As the resolution step of the proposed method is a two-way

oD ang YSISesolution method in nature, the present authors compared the
The only difference betwgen the mgltl-blllnear model for O"® results of a conventional two-way resolution method, window
sample and that of multi-samples is that the ConcenFratlonSfactoranalysis (WFAJ17], with that of the proposed method
are a vector for one sample and hold unconverted in eaChfor the 10th sample of the real HPLD-DAD data array. It is
run. For a complicated system, the search for conditions of

2 thorouah separation of all components is often exha St_found that the correlation coefficients between two corre-
. u9 paratio P ' xhau spondingly resolved profiles (chromatograms and spectra) of
ing and time-consuming. The proposed method provides an

WFA and VVSP-ALS are all larger than 0.99. This validates

e e e 0SS S0t he permance of WWSP-ALS i compaatle b
of unique resolution method. Moreover, it does not involve

a part of components, and then use the present method Qhe determination of feature regions such as selective regions

achieve the resolutions. . . . -
. L . and zero-concentration regions, which are usually required
As there exist severe retention time shifts in the real HPLC- 9 yreq

DAD dataarray, the results of PARAFAC could be expectably ... 3

not very satisfactory. The correlation coefficients between correlation coefficients between the real and resolved concentrations for the
the resolved and true profiles for the four components are real HPLC data array

given in Table 2for spectra andable 3for concentrations. Vitamin B; Vitamin Bs  Vitamin Bs  Vitamin B,

It can be seen that the resul_ts of PARAFAQ for components VVSP—-ALS 0.9993 0.9996 0.9916 0.9947

1 and 4 are not so good, since more serious shifts can be (11 samples)

observed fronfig. 2a. One can also find that the results of PARAFAC 0.8602 0.9973 0.9932 0.9906

the proposed method are superior to that of PARAFAC as a (11 samples)

whole, especially for the first component, whose shift is the PARAFAC 0.9990 0.9990 0.9940 0.9993

most severe one; a more precise estimate to the concentrations (10 samples)
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